The Journal of Grey System ›› 2020, Vol. 32 ›› Issue (4): 15-31.

Previous Articles     Next Articles

Using Improved Non-linear Multivariate Grey Bernoulli Model to Evaluate China's CO2 Emission

  

  • Online:2020-12-08 Published:2021-01-11

Abstract:

The current study proposed the improved non-linear multi-variable Grey Bernoulli model and predicted the CO2 emissions in China. Firstly, the paper presents an improved multivariate grey Bernoulli model (INGBM(1, N)) that considers the nonlinearities of the system characteristic data and related factors in establishing the grey model. Secondly, the influence of the relevant factors on the grey model's forecast accuracy has been considered. The more the number of relevant factors, the higher the relative level with the system characteristic data, the higher the calculation accuracy. However, predictive accuracy began to decrease again after the number of relevant factors more than a specific value. Thirdly, we selected the number of relevant factors as 4 (coal energy consumption, urbanization rate, crude oil, population) and carried out compared analysis with other grey models and non-grey models. The results show that the proposed model has the best forecasting accuracy. The proposed model is a generalization of several other grey forecasting models. China's CO2 emissions for 2019-2021 is forecasted. It estimated that the value would continue to increase over the next three years and reach 9958.57Mt by 2021. Finally, several measures have briefly mentioned reducing CO2 emissions based on the influence of relevant factors.